Exercise 32

Find a parametrization for the line perpendicular to $(2,-1,1)$, parallel to the plane $2 x+y-4 z=1$, and passing through the point $(1,0,-3)$.
[TYPO: There's a period missing at the end.]

Solution

The equation for a line is

$$
\mathbf{y}(t)=\mathbf{m} t+\mathbf{b}
$$

where \mathbf{m} is the direction vector and \mathbf{b} is the position vector for any point the line goes through. The direction vector is perpendicular to both $(2,-1,1)$ and the normal vector of the plane, $(2,1,-4)$, which is obtained from the coefficients of x, y, and z. Take the cross product of these two vectors to get \mathbf{m}.
$\mathbf{m}=(2,-1,1) \times(2,1,-4)=\left|\begin{array}{ccc}\hat{\mathbf{x}} & \hat{\mathbf{y}} & \hat{\mathbf{z}} \\ 2 & -1 & 1 \\ 2 & 1 & -4\end{array}\right|=(4-1) \hat{\mathbf{x}}-(-8-2) \hat{\mathbf{y}}+(2+2) \hat{\mathbf{z}}=3 \hat{\mathbf{x}}+10 \hat{\mathbf{y}}+4 \hat{\mathbf{z}}=(3,10,4)$
The position vector for a point the line passes through is $(1,0,-3)$.

$$
\begin{aligned}
\mathbf{y}(t) & =(3,10,4) t+(1,0,-3) \\
& =(3 t, 10 t, 4 t)+(1,0,-3) \\
& =(3 t+1,10 t, 4 t-3)
\end{aligned}
$$

